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Compressibility Effects on Rotor Forces in the Leakage Path between a Shrouded

Pump Impeller and Its Housing. (August 1993)

Nhai The Cao, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Dam Childs

A modified approach to Childs' previous work (1989,1992) on fluid-structure

interaction forces in the leakage path between an impeller shroud and its housing is

presented in this paper. Three governing equations consisting of continuity, path-

momentum, and circumferential-momentum equations were developed to describe the

leakage path inside a pump impeller. Radial displacement perturbations were used to

solve for radial and circumferential force coefficients. In addition, impeller-discharge

pressure disturbances were used to obtain pressure oscillation responses due to

precessing impeller pressure wave pattern. Childs' model was modified from an

incompressible model to a compressible barotropic-fluid model (the density of the

working fluid is a function of the pressure and a constant temperature only). Results

obtained from this model yielded interaction forces for radial and circumferential force

coefficients. Radial and circumferential forces define reaction forces within the

impeller leakage path.

An acoustic model for the same leakage path was also developed. The

convective, Coriolis, and centrifugal acceleration terms are removed from the

compressible model to obtain the acoustics model. The compressible model is

compared with the incompressible model and the acoustic model. A solution due to

impeller discharge pressure disturbances model was also developed for the

compressible and acoustic models. The results from these modifications are used to

determine what effects additional perturbation terms in the compressible model have

on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible



model cause resonances (peaks) in the force coefficient response curves. However,

these peaks only occurred at high values of inlet circumferential velocity ratios,

Uoo(O) > 0.7. The peak pressure oscillation was shown to occur at the wearing ring

seal. Introduction of impeller discharge disturbances with n = 1 ! diametral nodes

showed that maximum peak pressure oscillations occurred at nondimensional precession

frequencies (./ = D../c0 where co is the running speed of the pump) of f = 6.4 and f

= 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscillations to occur at the wearing ring seal, the nondimensional excitation frequency

should be on the order of f= 2_182:for n = 1i. The resonances found in this

research do not match the excitation frequencies predicted by Bolleter. At the

predicted peak excitation frequencies given by Bolleter, the compressible model shows

an attenuation of the pressure oscillations at the seal exit.

The compressibility of the fluid does not have a significant influence on the

model at low values of nondimensional excitation frequency. At high values of

nondimensional frequency, the effects of compressibility become more significant. For

the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do

affect the results to a limited extent for precession excitation and to a large extent for

a pressure excitation when the fluid operates at relatively high Mach numbers.
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CHAPTER I

INTRODUCTION

In the past, wear-ring seals used on the SSME HPFTP (Space Shuttle Main

Engine High Pressure Fuel Turbopump) made from KEL-F plastic came back after

operation revealing highly unusual characteristics. Despite being in constant contact

with liquid hydrogen, post-test inspection showed that interior points in the stator

element had melted and resolidified. The material used in the seal stator has poor heat

conduction properties and high internal hysteretic damping. Pressure oscillations

adjacent to the seal may be a source of cyclic stress producing hysteretic losses. This

investigation will examine the pressure oscillations which may cause cyclic stresses in

the leakage path between the impeller shroud and its housing. Possible sources of

excitation causing the seal to melt and resolidify will be investigated.

For this project, an analysis will be performed for a bulk flow model of the

leakage path between a pump impeller shroud and a housing along the front side of the

impeller, from inlet to discharge (Fig. 1). Simply defined, a bulk flow model

considers only the average of the velocity distribution across the flow field. The

research will be an extension of analyses performed previously by Childs (1989, 1992)

for a shrouded pump impeller and its housing.

The working fluid will be modelled as a barotropic fluid in this analysis, instead

of an incompressible fluid, to account for fluid compressibility. The density and

viscosity of barotropic fluids depend only on the local pressure and are independent of

temperature. This assumption is reasonable for most cryogenic fluids, where viscosity

is low and effects of viscous heating are negligible. The properties of the working

fluid, i.e., density and viscosity, will be implemented into a new analysis by using a

general 32-term, thermodynamic, equations-of-state program, MIPROPS (IvlcCarty,

1986, modified by San Andres, 1991).

This paper is modelled after the ASME Journal of Tribology.
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CHAPTER 1I

LITERATURE REVIEW

Childs (1989) performed a bulk-flow analysis for the leakage path between an

impeller shroud and a pump housing. Three governing equations of motion were

derived for a bulk-flow model to represent incompressible fluid flow in the leakage

path of a conventional water pump impeller. Three equations, consisting of a

continuity equation, a path-momentum equation, and a circumferential-momentum

equation, were used to solve for rotordynamic forces due to a precessional excitation

of the rotor.

Childs used a perturbation expansion in the eccentricity ratio of the governing

equations of fluid motion for small motions about a centered impeller position yielding

a set of zeroth and first-order governing equations. A zeroth-order solution was

obtained by an iterative procedure to define the leakage, pressure, and circumferential-

velocity distribution. Using a perturbed clearance function due to a radial displacement

perturbation, Childs evaluated the first-order model at several inlet circumferential

velocity conditions to obtain the first-order perturbed solutions. First-order

perturbation results provided rotordynamic coefficients (direct and cross-coupled

stiffness, damping, and mass) and lateral reaction forces for the model. Childs'

predictions for the impeller of Fig. 2 are shown in Fig. 3. The predicted radial and

circumferential force coefficients are shown versus the nondimensional precessional

frequency for nondimensionalized inlet circumferential velocities of Uoo(0) = 0.5, 0.6,

and 0.7. Nondimensional precessional frequency is the ratio of the impeller precession

frequency, D, to its running speed, co. The graphs showed a considerable "dip", or

resonance, in the radial and circumferential force response coefficients at higher values

of Uoo(0). The radial and circumferential force coefficients represent the

nondimensionalized reaction forces acting on the impeller face due to impeller

precession. Childs showed that the centrifugal acceleration terms in the momentum

equations produced the "dip" in the results. By removing the
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centrifugal acceleration term from the path-momentum equation, the "dips" in the plots

were eliminated.

Bolleter (1988) presents a relationship between the difference (n) in the number

of impeller blades (n_) and diffuser vanes (n.,) and the precessional frequency for

pressure pulsations in an impeller leakage path. Various combinations of impeller

blade and diffuser vane number causing vibrations and pressure pulsations in the

impeller are described. The relationship presented by Bolleter states that a pressure

pattern develops with n = ] nz - n., I diametral nodes around the impeller exit. The

precession velocity of the pressure oscillation is no_z/(I n_ - n2b. For example, an

impeller with nt = 11 blades and n, = 6 diffuser vanes would have amplifications of

the pressure oscillations at frequencies of multiples of 1ltz/(h 1 - 6 b=2.2c0.

Childs (1992) performed an analysis similar to (Childs, 1989) incorporating the

effects of different numbers of impeller blades and diffuser vanes for the bulk flow

model using excitations due to discharge-pressure oscillations instead of orbital motion.

This analysis considered the harmonic response of flow within the annulus due to

variations in the discharge pressure of the impeller. This analysis also compared the

effect on the response of the pressure oscillation due to different numbers of pump

impeller blades and diffuser vanes. Zeroth and first-order perturbation equations were

also derived for this analysis. However, the first order perturbations in this analysis

were excited by discharge-pressure perturbations instead of impeller precession. The

impeller discharge excitation was defined as a precessing harmonic pressure oscillation

with n nodes and a precessional frequency of fL

Results from the analysis due to perturbed flow in the leakage path caused by

oscillations in the impeller discharge pressure show that the peak pressure oscillation

occur near the exit ring seal. The pressure oscillations from the impeller were shown

to depend on the circumferential velocity of the fluid entering the seal, the Fourier

coefficient, n, and the relative closeness to the first resonant frequency of the fluid to

the peak precessional frequency of the rotating pressure field. Note that n represents

both the Fourier coefficient used by Childs and Bolleter's n = [ nz - n_l.
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Acoustic modes are produced by the interaction of fluid inertia and

compressibility. Thompson (1988) explains that the wave equation, the fundamental

equation of acoustics, is obtained by assuming that the convective acceleration terms

are negligible compared with the temporal acceleration terms. For ordinary acoustic

analysis, Thompson states that this assumption is "highly satisfactory" for fluid flow

characterized by a low Mach number, typically M s ,, 0.1. By removing the convective,

Coriolis, and centrifugal acceleration terms from a modified general perturbation

(compressible) version of Childs' model, a similar wave equation can be obtained.

This resulting equation, in theory, can be used for an "acoustic" analysis of the flow

fields.

San Andres (1991) developed a solution procedure for a model of fluid flow in

turbulent hydrostatic bearings and annular seals operating with cryogenic barotropic

fluids. He used a 32-term equations-of-state program provided by NBS Standard

Reference Data Base for prediction of the properties of LH2, LO2, LN2, and other

fluids at different pressures and temperatures. The code, MIPROPS, delivers fluid

properties which are used in the analysis procedure. In addition to obtaining the fluid

properties from MiPROPS for use in a compressible model, San Andres also

considered the properties of the working fluid as a linear function of pressure. From

his results, San Andres found that for highly compressible fluids, such as liquid

hydrogen, the barotropic properties model based on an equation of state gave accurate

leakage and force response for bearings and seals with a large pressure differential.



CHAPTER III

OBJECTIVES

This research will introduce compressibility of the working fluid in the leakage

path as an extension to the analyses performed by Childs (1989, 1992). The results

will provide information concerning the relationship between an incompressible, a

compressible, and an acoustic model with liquid hydrogen as the working fluid. The

results will also provide information regarding the cause of the unusual behavior

exhibited by the KEL-F plastic rotor element and verify the validity of Thompson's

assessment concerning the effects of fluid mechanics and acoustics. This research

project will also analyze the effects of the centrifugal acceleration modes and acoustic

modes of a barotropic fluid in the leakage path between a shrouded pump impeller and

its housing.

The results obtained from a compressible-flow model will be compared with

the results of an incompressible model. The compressible-flow model will also be

reduced to an acoustics model, the results of which will be compared to the

compressible-flow model. This comparison will be performed for two different

perturbation excitations: (a) a precessional excitation involving an orbital motion of

the rotor, and (b) a pressure oscillation excitation, involving perturbation of the

discharge or inlet pressure of the leakage path. The geometric and operating

characteristics of the first stage impeller of the SSME HPFTP will provide the

parameters used for the governing equations.

A bulk-flow model will be developed and used to simulate the leakage path

inside the first impeller stage of the Space Shuttle Main Engine Turbopump. Results

from the computation should indicate if any interaction exists between acoustic and

centrifugal acceleration modes, and the influence of fluid mechanics terms (convective,

Coriolis, or centrifugal acceleration terms) on acoustic modes.



CHAPTER IV

GEOMETRIC AND OPERATING CHARACTERISTICS

Figure 4 shows the first-stage impeller of the Space Shuttle Main Engine

Turbopump. The impeller measures 0.3048 m in diameter at the exit (leakage path

inlet) and 0.1905 m in diameter at the sea! inlet (leakage path exit). The impeller is

also characterized by 24 impeller blades and 13 diffuser vanes. At full power levels,

this stage operates at 34,000 rpm, with an inlet pressure at the entrance to the leakage

path of 13.79 MPa and a discharge pressure of 1.72 MPa at the exit of the wearing

ring seal. Operating at a pump speed of 34,000 rpm, the resultant velocity vector of

the liquid hydrogen inside the leakage path is calculated to be about 0.4 times the

acoustic velocity of liquid hydrogen.

The wearing ring seal contains four steps, measuring 0.1915, 0.185, 0.1786,

and 0.172 m in diameter, which accommodate four teeth at the end of the impeller

blade. The radial clearances between the seal and the rotor teeth are estimated to be

0.229 mm (0.009 in), accounting for radial expansion of the rotor during operation.
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CHAPTER V

BULK FLOW MATHEMATICAL MODEL

Childs' governing equations will be modified for this project to reflect a bulk

flow model operating with a barotropic fluid. As in Childs' analysis, these equations

will be nondimensionalized and perturbed to yield zeroth and first-order governing

equations.

5.1 General Governing Equations

Using the approach taken by Childs (1989), the governing equations axe:

• Continuity Equation

apH a 1 O
HaR

+ ----pu, = 0 (1)
Ras

• Path-Momentum Equation

2 I.u_aR aU,u,_Ha_,: .(OU, ou,uo
as -P"--E-_+" +'"+P'[-&-+_ _ +as )

(2)

• Orcumferential-Momentum Equation

_auo auouo au, uou, )
aR (3)HaP _ "[_+'_Or +p __ +

An additional governing equation is obtained by using MIPROPS to obtain the

properties of liquid hydrogen.
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• Equations of State

(4)

With the exception of the addition of P to the continuity equation, Eqs. (1-3)

are identical to Childs' (1989). The path and circumferential-momentum equations do

not change from Childs' model because the density (p) drops out of the momentum

equations when the continuity equation is used to simplify them.

The equations of state in Eq. (4) define the density and viscosity for the bulk-

flow model. The variation in density of the fluid in the model will be implemented by

assuming that the working fluid is barotropic. Here, the variation in density of the

working fluid will be modelled as a function of pressure and a constant temperature

only. In this investigation, the MIPROPS code calculates the value of density and

viscosity at a constant temperature of 23.37 K with varying input pressures, and

returns values of density and viscosity to the main program. The variation of viscosity

with respect to pressure were very slight; therefore, viscosity was kept constant.

H(S, 0, t) in the governing equations defines the clearance between the impeller

and the housing. Nondimensionalization of this variable is given in the nomenclature

and also later in this text.

I-'Iir's (1973) definitions were used to define the shear stress components of the

rotor and stator surfaces. The equations shown below define the shear stress acting

on the impeller and its housing. The first subscript in the equations denotes the

direction of fluid flow (path and circumferential), and the second subscript refers to the

surface (stator and rotor), respectively.

_÷1

•=- +Cuju,l']-r
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"Csr

_Or -

mr÷l

ns UoUsR,_[1 +(Uo/U_)2]-'_-- yp

nu'÷l

nr - Rco)R_{I -Rco)/U,_} 2pUXUo +[(%

(6)

(7)

(8)

Reynolds' number used in these equations is represented by,

R_ = 2HUJv (9)

Boundary Conditions

The pressure drop of the inlet to the leakage path provides the inlet boundary

condition (s=0) given by the relationship,

P, - Po(O,O,t) = p(1 +{)U_O,O,t)/2 (10)

The exit wearing-ring seal defines the following exit boundary condition,

e(L.,O,,)- - (11)

These boundary conditions apply directly for precession excitations.

For the analysis which examines the changes in (u,, uo, p) due to changes in

the impeller's discharge P, or inlet pressure P,, the following boundary conditions are
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stated for the inlet and exit, respectively,

Ps(0,t) - P0(0,0,t) : p(1 +_)U_O,O,t)/2 (12)

P(L,,e,t)- P,(O,t)= C (13)

Eqs. (12-13) differ from Eqs. (10-11) because Pe and P, are now also functions of

time.

5.2 General Perturbed Equations - Nondimensionalization and Perturbation

Analysis

Introducing the following variables into Eqs. (1-8),

u,=u/v,, u0--uJg,o, p=P/pv?,

h = HIC i, s = S/L,, r = R/R i

: = tot, b = V/Ri_, T= LJV i

= P/Pi

(14)

yields nondimensional governing equations.

The perturbation variables used to obtain zeroth and first-order equations are

defined by,

u,=Uso +¢Ua, h=ho +¢h p t5=_o+¢i5t (15)
uo = Uoo+ ¢uet, P =Po + cP_

where e is the perturbation coefficient to be defined separately below for precession

and discharge-pressure excitation.

5.2.1 Zeroth Order Solution

The zeroth-order equations are the same for the precession and exit-pressure

excitations.
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5.2.1.1 Zeroth-Order Equations

The path and circumferential velocity distribution and the leakage rate for a

centered impeller position are defined by the following zeroth-order governing

equations.

• Continuity Equation

rhou,o_o = 1 (16)

• Path-Momentum Equation

-To-d =_--_--7--d_T ) + 2
(17)

• Circumferential-Momentum Equation

2au°°+2u°°ar ÷[o,(ueo-O+o,u_] =o
ds rds

(18)

where

o, - (L,m0)x,,o, - (L,m0)x,
m.t-'l

m

_. = nsR_l +(ueolbuso)2]2

Im'÷l

).,= nsR_{l +[(ueo_ r_bu_o;} 2

(19)

• Equation of State

=_,_.) (20)

Eq. (19) represents friction factor definitions for the stator and rotor surfaces,

respectively, introduced in Eqs. (5-8).
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5.2.1.2 Zer0lh-Order Solution

The zeroth-order continuity Eq. (16) can also be expressed as,

duso r 1 dho + 1 apo + 1 dr]

da--us°['_0-'_ 15"'o-_" r'_J (21)

This equation can be substituted into Eq. (17) to obtain

dpo+, dr,1' d,-(,Uoo,1+(°,+°,)_ l__..dP_.__oou 2[ 1 dho + l " 2 U_O (22)

_o_ =- "°[To-_-ToT- 7_]-7_tT) 2

The governing zeroth-order equations now reduce to two governing equations,

consisting of Eq. (18) and Eq. (22). Eq. (20) defines p solely as a function ofp and

provides the density used in Eq. (18) and Eq. (22).

Boundi_ry Conditions

The inlet boundary condition for the zeroth-order pressure relationship can be

expressed from Eq. (10) as,

_ _>, ..,u_O)
Po(O)-p_2-(i+_j-7

(23)

The zeroth-order solutions are obtained by solving Equations (18) and (22)

iteratively. An initial (s=0) fluid velocity V_ is estimated which then defines U,o(S).

A specified uoo(O)and the calculated Po from Eq. (23) are used to numerically integrate

the zeroth-order equations (18) and (22) from the path entrance (s=0), to the path exit

(s=l). The procedure is continued with revised values of V_ until convergence is

obtained between the prescribed and the calculated exit pressure.

5.2.1.3 Zeroth-Order Results

The zeroth--order results provide the mass flow rate through the leakage path.
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The discharge coefficient Ca, used in this analysis was obtained by using the leakage

rate through the wearing ring seal. The leakage through the wearing ring seal of the

SSME HPFTP was calculated using a seal leakage code developed by Morrison et al.

(1983), and this value was used to calculate the discharge coefficient at specific

impeller operating conditions. The seal leakage code uses the geometry of the seal

and the operating conditions, i.e., inlet and exit pressures, viscosity, density, etc. to

calculate the leakage rate through the seal. Note that this seal leakage code treats the

working fluid as incompressible.

The seal leakage code yielded several mass flow rates for the prescribed

geometry and operating conditions, depending upon the pressure drop across the

impeller and the wearing ring seal. Several discharge coefficients were tested in the

model to match the flow rate through the impeller leakage path and the flow rate

through the seal. Once the two flow rates converged, the resulting C,_ was used in

the model as an exit restriction boundary condition. The mass flow rate through the

seal was found to be 1.6373 kg/s, with the resulting C,u being 7039.6, and inlet and

exit pressure of the seal being 8.101 MPa and 1.72 MPa, respectively. This pressure

drop across the seal represents about one third of the total pressure drop across the

entire impeller leakage path.

Zeroth-order pressure solutions for the incompressible and compressible models

are shown in Figure 5. The nondimensional path velocity along the leakage path is

given in Figure 6, and the zeroth-order circumferential path velocity is shown in

Figure 7. For the incompressible model, a mean value for the density of liquid

hydrogen inside the impeller leakage path was used to obtain the results shown.

The results of the compressible model vary only slightly from the

incompressible model for the zeroth-order solution. The pressure distribution across

the leakage path shows the same trend and approximately the same magnitude of

pressure drop, but not exactly the same inlet and exit pressure values. The C,_ found

earlier provides the exit restriction for the seal and therefore is used for both models.

Because the incompressible model uses an average density along the leakage path, the

inlet and exit densities for the two models will be slightly different. This accounts for
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the differencein the dimensionlesspressuremagnitudesshown in Figure 5. The

dimensionalpressuresat the inlet arealmostexactly the samevalue, confirming the

inlet boundarycondition. As shownin Figure 6 andFigure 7, the zeroth-orderpath

velocity andthezeroth-ordercircumferentialvelocity arenot affectedsignificantly by

compressibility.

5.2.2 First-Order Equations

First-order governing equations define the path and circumferential velocity and

pressure distribution along the leakage path due to perturbed clearance function or

perturbed discharge-pressure.

First-order perturbation equations obtained by the perturbation expansion of Eq.

(14) are

• Continuity Equation

_oCh,+hoaP1+_ i[ , OP1+hoOo._+ -ahl]

I [_'oU._oh,) 8('ous,ho) a(, _o)] 1 dr .+ as * + j+ + +U,o ,ho)--o
(24)

• Path-Momentum Equation

O_o as +uoIAz_ u'tA_+pIA_ To +To raO

(25)

• Circumferential-Momentum Equation

bL=OPirR i 0000 +uolAze U'r430 [ -_ u°° iguot -'72"]-hav'l°+ + _rA4o+ Tto + T¢o r a0 + uj°OueasJ-

(263
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• Equation of State

as dp as' O_ dp 0_' _ dp

With the exceptions of A4, and A_, which are defined in the appendix, the parameters

A,,, A2,, etc., in these equations can be found in Childs (1989).

The dependency of _ with respect to s, z, and 0 in Eq. (24-26) are eliminated

from the governing equations by applying the definitions of Eq. (27). The relationship

between _ and p in Eq. (27) was obtained from the results produced by MIPROPS.
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CHAPTER VI

FIRST ORDER EQUATIONS AND SOLUTIONS FOR GENERAL

PERTURBED COMPRESSIBLE MODELS

This chapter provides the first order equations and solutions for precession

excitation and pressure excitation cases for the general perturbation (compressible)

models. Results for both excitation cases are presented using an inlet tangential

velocity of uoo(O) = 0.71 The radial and circumferential-force coefficient response

curves represent the nondimensional reaction force acting on the impeller face in the

respective directions versus nondimensional frequency ratio, f.

For the first-order solution analysis, a separation of variable approach was used

to obtain complex ordinary differential equations. The resulting coupled equations

were integrated to obtain the nondimensional radial and circumferential force response

coefficients. The calculated results from the first-order precession excitation and the

pressure excitation of the general perturbed bulk flow model provide predictions which

can be used to qualify and quantify the effects of fluid compressibility in the model.

6.1 Precession Excitation: General-Perturbation Model

The precession excitation of the general perturbed model uses the perturbed

clearance function,

_.hl = htc(a, r,)cos 0 + hts(s,.c )sin 0 (28)

as the excitation.

The theta dependency of Eqs. (24-26) can be eliminated by substituting the

following solution format

u a = uaceosO + uatsinO

Pl =Plcc°sO +p_inO

uet = uetceos0 ÷ uet.,sin0

= l,eO60÷ u.sin0

into Eqs. (24-26), which yields six real equations.

(29)
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Three complex equations in the independent variables s and x can be obtained

by introducing the complex variables

Its1 = Usl c +JUsls,

lZt =Pie +JPw

(30)

These complex equations in the independent variables s and x are

K .1 aho u_,apo+.or ]
- -;-_' + " h0_ P0_ r po_

+ o___Tdpt a£, u_oa_ r u.__aho .eTu ] oTahl U_oah,

_,oep.,_+_-o_-_, Lho=_ +J_ _o]-_oo, -hs_
(31)

l°_Zt [ __L __ ___]Po as +u_?z,+a,/h,+iz?4. + To _iTo _,,+U,o =/t,a_ (32)

bL, JZ, [ _.__ . u_ +u o_,]=n#,o(33)

Since the equation of state is a function of pressure and a constant temperature only,

it can be modified as shown in Eq. (27) and used to remove the dependency of 151from

s in Eq. (31). Further simplification of Eqs.(33-35) can be made by using the

following def'mitions provided by Childs (1989)

(34)

(35)
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where

q =x+jy
(36)

Eq. (36) represents the physical motion of the rotor in the x and y directions, shown

in Figure 1.

Assuming a harmonic seal motion of the form

q =qoe_ ' f= fl/_ (37)

the corresponding harmonic solutionscan be stated,

_I = u_ze"_' a0z =ue'ed_' _l =Ple_ (38)

which yields the following three complex ordinary differential equations of motion,

(39)

where

[a]--
(40)
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82

g

Podpo _

dzA1e

dsu_

Gq

Elements used in Eqs. (40-41) can be found in Appendix A.

(41)

6.1.1 BQundary_ Conditions

Nondimensional first-order boundary conditions for the precession excitation can

be stated from equations (10) and (11) as

PI(O) = -(1 +_sl(O) (42)

( l+(l+g)dpl°)2dp

Pl(l)
= C,_u_l)u,,(1) (43)

Additionally, the perturbation entrance circumferential velocity can be stated as zero,

_e_(0)=0 (44)

The solution to this set of equations is obtained by applying the procedure

presented by Childs (1989). The solution procedure used to determine the reaction

forces and moments are also given by Childs (1989).

6.1.2 First-Order Results

Radial and circumferential force response coefficients for general compressible

and incompressible precession excitation models operating with an inlet circumferential

velocity of Uoo(0) = 0.7 are shown in Figure 8 and Figure 9. The results
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show that the effects of compressibility do not affect the results of the model to a

great extent over the frequency range considered. As with Childs' results, local

resonance peaks occur in the response curves. Two local peaks occur in the response

curves, at nondimensional frequency ratios off = 0.1 and f = 0.8. For low inlet

values of circumferential velocity u0d0) = 0.5, the behavior of the response curves

of the compressible model is virtually the same as the results shown for an

incompressible model shown by Childs (1989), i.e., the resonance in the response

curves diminish at lower values of inlet circumferential velocity.

Complex first-order pressure, path velocity, and circumferential velocity for

different nondimensional excitation frequencies along the leakage path produced from

the first-order perturbation analysis provide approximate complex modes at the

resonant frequencies. The real and imaginary parts of these results are used to obtain

amplitude and phase plots at the resonant frequencies. Amplitude and phase plots of

first-order nondimensional pressure in the leakage path at the frequency ratios off -

0.1 and f = 0.8, where the local peaks occur, are shown in Figures 10 and 11.

Complex modes for u,j at the same frequeney ratios are shown in Figures 12 and 13.

At the frequency ratio of f --- 0.1, the amplitude of the pressure along the

leakage path steadily increases and has a maximum value at the exit of the leakage

path. For the frequency ratio off = 0.8, the maximum pressure amplitude occurs

near the middle of the leakage path. The mode shape for us_ at f = 0.1 shows a

slightly decreasing amplitude along the leakage path, with a minor increase in the

amplitude at the exit. As with the mode shape for the pressure distribution at f --

0.8, the maximum magnitude occurs near the middle of the seal.

As with Childs' model, the resonant peaks found in this analysis can be

attributed to the centrifugal acceleration terms. When the centrifugal acceleration

terms are removed from the model, the local peaks in the response curves diminish

significantly. The mode shapes at f - 0.8 do not support the theory that maximum

pressure oscillations at the leakage path exit are causing the seal to melt because the

maximum amplification occurs near the middle of the leakage path.
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Noticeable effects of compressibility upon the model can be seen at higher

nondimensional frequency ratios. Figure 14 shows the response curves of the

compressible and incompressible models for high frequency ratios. The force

responses of the incompressible model continue to grow with increasing f, while the

results of the compressible model exhibit peaks corresponding to the natural

frequency. This is consistent with classical vibration analysis, with the incompressible

model having no natural frequency due to an infinitely high bulk modulus, while the

compressible model has a natural frequency corresponding to the compressibility of

liquid hydrogen in the model.

6.2 Pressure Excitation

This part of the research involves introducing a time and circumferentially

varying impeller discharge pressure to the compressible model. With different

The pressureexcitations involved in this model, new boundary conditions also exist.

perturbation takes the form of the following equation.

• Supply Pressure-Excitation Perturbation

e,(e,t)= ÷ce,l(o,t) (45)

The occurrence of epsilon in this equation represents the perturbation coefficient for

discharge-pressure excitation.

6.2.1 First-Order Equations

Nondimensionalization and perturbation of the general governing equations (6-

8) yields the same governing equations for pressure excitation perturbation as for

precession excitation governing Eqs. (31-33), except with hi = 0 for this model.

Therefore, the first-order governing equations for pressure excitation will not be

presented in this section ........
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6.2.2 Boundary. Conditions

Nondimensionalization and perturbation of the boundary conditions introduced

in Eq. (12-13), the first-order boundary condition can be stated as

p,,(O,t)_p,(O,O,t)=(l +_)u,,(O,O,tlX + (1+ _) d_ 10)
2 dp (46)

P'(l'e't)-Pez(O't)=Ca'u_(1)u'l(l'O'tI14 (l+/_)dPl')2dp

p,l(O,t), p,_(O,t) provide the boundary excitations and take the form,

Psi(O,t) = eJ°_(Pslcc°snO +Psz: sinnO) (47)

p,_(O,t) = eJ°t(pezccosnO +p,zssinnO)

6.2.3 First Order Solution

The theta and time dependency of the first-order pressure excitation governing

equations is eliminated by assuming

u,_=d:'(u,_,cosnO+u,_:innO)

uot=eia(uo_cosnO+u,_:innO)

pt=ea'(p_:osnO+pusinnO)

(48)

where n represents the difference of number of impeller blades and vanes, also defined

as the number of diametral nodes (Bolleter). Substitution of Eqs. (48) into the first-

order pressure excitation governing equations, equating coefficients of cos nO and sin

nO, and using complex variables described in Eq. (30) reduces the real equations to

three, complex ordinary differential equations

(49)
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where

[B] -

, ,no..,, , + BI2

A_ A2o +fiT d_o bL,

u--2u.
A4,, B33 diS0

B31 B32 15o P0 d,$'

(5O)

Eq. (49) differs from Eq. (40) in that Eq. (49) is now a function of n with hz = 0.

These equations are solved using the method presented by Childs (1992).

6.2.4 First-Order Results

Results from the pressure excitation perturbation analysis using a difference of

impeller blades and vanes (n) is presentedlin this section. Sine 6 the SSME HPFTP
......... = = =

wearing-ring seal is located at the end of the leakage path (s = 1), the results from

this section will concentrate on this area of the leakage path. The pressure-oscillation

response at the end of the leakage path versus nondimensional excitation frequency

corresponding for n = 11 is illustrated in Figure 15. The value of n = 11 is used

because, as mentioned previously, the SSME HPFTP has 24 impeller blades and 13

diffuser vanes, for a difference of 11. Bolleter (1988) explains that the dominant

pressure pattern to be expected for this arrangement would have 11 diametral nodes.

This is important because it is the value used as n in Eq. (48). Figure I5 shows that

the peak pressure oscillation at the exit of the impeller leakage path (s = 1) occurs at

a nondimensional frequency of about f = 6.4 and f = 7.8. Bolleter predicts that the

peak pressure oscillation should occur as a function of the difference in the number

of impeller blades and vanes, presented in Tables 1 and 2.
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The resonant frequency ratios atf = 6.5 and f = 7.8 clearly are not functions

near the predicted excitation frequencies provided in Table 2 for n = 11. None of the

other cases tested yielded results which correspond to the values shown in Table 2 for

the respective value of n. These results reveal that amplification of peak pressure

oscillation does not occur at the expected frequency ratio. At the predicted frequency

ratios, the cases tested for this model showed that an attenuation, rather than an

amplification of the pressure waves occurred.

Table 1 - (n t - n,_) for various combinations of multiples of impeller blades and vanes

n_,X_

13

26

39

nl 24 48 96

11 35 83

-2 22 70

-15 9 57

Table 2 - Expected peak nondimensional frequency ratios, f or, {n/(nz - nz)}, for

various combinations of multiples of impeller blades and vanes

n2NN_

13

26

39

n I 24 48 96

2.18 1.37 1.16

-12.00 2.18 1.37

-1.60 5.33 1.68

Amplitude and phase plots (Figures 16 and 17) of the pressure oscillation for

the two resonant frequency ratios found for n for the compressible pressure excitation

model show that the peak pressure oscillation occurs at the exit of the leakage path.

This result helps to support the hypothesis that pressure oscillations at the leakage path
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exit are causingthe seal to melt. However, the result does not provide enough

evidenceto provide a very plausibleexplanation for the behaviorexhibited by the

wearingring seal.

The responseof the compressiblemodel for other valuesof n is plotted in

Figure 18. The graph shows the relationship of the peak pressure oscillation response

to the number of diametral nodes. The nondimensional excitation frequency ratio at

which the peak pressure oscillation occurs increases as the number of diametral nodes

increase, consistent with Childs' analysis (1992). However, unlike Childs' results,

where the magnitude of the peak amplitude stays relatively constant, regardless of n,

the results produced from the compressible model show that the amplitude of the

pressure oscillations increases as n increases. The effects of added compressibility to

the results of this model is greatly enhanced compared to results of the precession

excitation model. But, as with the precession excitation analysis, the influence due to

compressibility effects is only noticeable at higher nondimensional frequencies.
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CHAPTER VII

FIRST ORDER EQUATIONS AND SOLUTIONS FOR ACOUSTIC MODELS

For acoustics analysis, the temporal acceleration terms are the only acceleration

terms which remain from the set of general governing equations. A highly reasonable

assumption may be made that the contributions from the convective, Coriolis, and

centrifugal acceleration terms are negligible compared to the temporal acceleration

terms in the realm of ordinary acoustics (M 2 ,, 1) (Thompson, 1988). However, due

to the high Mach number with which the working fluid in the SSME HPFTP operates

(M = 0.4), the general perturbation fluid model and the acoustic model must be

compared to investigate the effects of the convective, Coriolis, and centrifugal

acceleration terms in an acoustic analysis.

The zeroth-order solution for the acoustics models do not change from the

previous results obtained because the zeroth-order equations and solution remain the

same .

7.1 Precession Excitation Model

7.1.1 First Order Equations

First-order governing equations for the acoustic precession excitation model can

be obtained by removing the effects of fluid mechanics, i.e., the convective, the

Coriolis, and the centrifugal acceleration terms from the general perturbation governing

equations given in 5.2.2, Eqs. (24-26). Removing the convective acceleration terms,

uoduo/ds uflu,/ds, the Coriolis acceleration term, 2u_odr/rds, and -2uoodr/(b2rds),

representing centrifugal acceleration, from the continuity Eq. (24) yields the first-order

governing acoustic continuity governing Eq. (51). The first-order governing acoustic

equations for the path and circumferential momentum are obtained by removing the

convective acceleration terms from Eqs. (25-26).
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• Continuity Equation

P° _-_h__ +h°alS.a_ +-T"__I[h a(_°u_°)'as
0(Ooho)

+ Usl OS

o<U:o>]_o
I+O' as J

(51)

• Path-Momentum Equation

Po as
--_ +uo,az, +u,:a_, + _,a4., +To--_ --hta_

• OrcumferentiaI-Momentum Equation

auol

+ uotA2o + u, tA3o + OlA4o +T_---._-- =h,a,o

(52)

(53)

7.1.2 First-Order Precession Excitation Solution

The theta dependency of Eqs. (51-53) can be eliminated by substituting the

solution format presented in Eq. (29). The three resulting complex equations in the

independent variables s and r after introducing the complex variables of Eq. (32) are

• Continuity Equation

Otis.._..2_ j_aT [ 1 aho 1 = h, + J %o

(54)

• Path-Momentum Equation

" Oj_l +_IA2$+_$:3d r+,_.:4kt +r(o _M=hlAl$--

_o_ &
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• Circumferential-Momentum Equation

b L s J21 + uo:20 + 5:30 + _1A40 + Tf.D_ -

r R_ Po
- hat ° (56)

Assuming the harmonic seal motion described in section 6.1, Eq. (38), the three

governing equations reduce to two differential equations of motion of the form,

d +.qlu,,l(qo  ,l (57)

where

.rT dz _j.o: Ate

PO @ e r (,4:o+floTJ (58)

The [C] matrix elements are given in Appendix C.

The du,,/ds term has dropped from the governing equations and thus uel can

be solved directly without integrating the partial differential equations, yielding,

(59)

Results to these equations axe obtained using the same solution procedure and

boundary conditions described for the first-order precession excitation equations in

section 6.2.2. The solution to these sets of equations can then be used to calculate the

force and moment coefficients in the impeller leakage path for the acoustic case where

classical acoustic assumptions are made.
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7.1.3 Fir_t-_)rdeLResults

The nondimensional radial force coefficient responses for the general

perturbation and acoustic cases are shown in Figure 19. The response curves for the

circumferential force coefficients are shown in Figure 20. The response curves for

the acoustic case are less erratic in behavior, and the peaks exhibited by the

compressible model totally disappear. This shows that the convective, Coriolis, and

centrifugal acceleration terms do affect the results of the compressible model to a

considerable extent at low frequencies. Childs (1989) correctly predicted that the

centrifugal acceleration terms caused the resonance in the response curve. Although

the results of the two models do not differ quantitatively, the trend exhibited by both

models are similar, as evidenced by Figures 20 and 21.

At higher values of nondimensional frequency, the effects of removing the fluid

mechanics terms from the model is shown in Figure (21). The two models show

about the same results. The natural frequency of the acoustic model is slightly lower

and the peaks are slightly higher. Mode shapes for pressure oscillations at f = 11.5

and f = 12 are shown in Figures 22 and 23. The mode shapes show that, at these

frequencies, the pressure oscillations are not the cause of the uncharacteristic behavior

of the exit wearing ring seal due to a precession excitation. The mode shapes do not

show conclusively that the pressure oscillations are occurring at the exit of the seal.

7.2 Pressure Excitation Model

7.2.1 First-Order F_uations

The equations obtained for the first-order acoustic pressure excitation

perturbation use the same procedure as for the first-order acoustic precession

excitation shown in section 7.1.1. The boundary conditions and perturbation

excitation are defined by the equations used for the general first-order pressure

excitation solution given in section 6.2. The resulting governing equations for

pressure excitation of the acoustic model are the same as those given in section 7.1.1,

except with h t being zero, analogous with the results obtained for the pressure

excitation equations for the general perturbation model.
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7.2.2 First-Order Pressure Excitation Solution

Using Eq. (48) to eliminate the theta and time dependency from the first-order

pressure excitation of the acoustic model and using the pressure excitation perturbation

described in Eq. (45), the resulting governing equations can be represented as,

=0 (60)

Where elements of [D] are provided in Appendix D.

In addition to hx being zero, Eq. (60) also is a function of n, unlike Eq. (57).

7.2.3 First-Order Results

Comparison of the general perturbation model and the acoustic model for n = 11

shows that the peak pressure amplification around f = 7.8 displayed by the general

perturbation model almost totally disappears for the acoustics model. From Figure 24,

the results for the acoustics model show that no amplification of the pressure

oscillation occurs, but rather, an attenuation of the pressure oscillation at all frequency

ratios. It can be concluded from this result that the convective, Coriolis, and

centrifugal acceleration terms contribute significantly to the results of a bulk flow

model when a pressure excitation is used as the perturbation parameter of the bulk

flow model. The results here also differ with respect to the location of the resonant

peaks in the nondimensional frequency range tested. For the acoustic model, the local

peaks do not match with those of the compressible model.

The sharp peak of the pressure amplitude near a frequency ratio of f -- 0.0 is

inherent in all the models (compressible, incompressible, and acoustic), shown in

Figure 25. The phenomenon causing this resonant excitation is not yet understood and

cannot be explained. However, the fact that this resonance occurs in all three models

explains that neither the compressibility or the acoustics effects of the models affects

this resonant frequency. Also, the fact that the frequency at which resonance occurs

is near f = 0.0, indicates that this peak could be the response to a free vibration of
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the fluid inside the leakage path.

Figure 26 shows the first-order pressure response for multiple cases of n. The

frequency responses due to different n show no quantitative trend with respect to n.

Unlike the compressible model, where the pressure response showed a definite,

noticeable response to different n, the acoustic model shows little quantitative and

qualitative response to different n value.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

A modified approach to Childs' previous work (1989,1992) on fluid-structure

interaction forces in the leakage path between an impeller shroud and its housing is

presented in this thesis. Three governing equations consisting of a continuity, path-

momentum, and circumferential-momentum equations were developed to describe the

leakage path inside a pump impeller. Radial displacement perturbations were used to

solve for radial and circumferential force coefficients. In addition, impeller-discharge

pressure disturbances were used to obtain pressure oscillation responses due to

precessing impeller pressure wave pattern. Childs' model was modified from an

incompressible model to a compressible barotropic-fluid model (the density of the

working fluid is a function of the pressure and a constant temperature only). Results

obtained from this model yielded interaction forces for radial and circumferential force

coefficients. Radial and circumferential forces define reaction forces within the

impeller leakage path.

An acoustic model for the same leakage path was also developed. The

convective, Coriolis, and centrifugal acceleration terms are removed from the

compressible model to obtain the acoustics model. The compressible model is

compared with the incompressible model and the acoustic model. A solution due to

impeller discharge pressure disturbances model was also developed for the

compressible and acoustic models. The results from these modifications are used to

determine what effects additional perturbation terms in the compressible model have

on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible

model do cause resonances (peaks) in the force coefficient response curves. However,

these peaks only occurred at high values of inlet circumferential velocity ratios. The

peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of

impeller discharge disturbances with n diametral nodes showed that maximum peak
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pressure oscillations occurred at nondimensional excitation frequencies off = 6.4 and

f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscillations to occur at the wearing ring seal, the nondimensional excitation frequency

should be on the order of f = 2.182 for n = 11. The resonances found in this

research do not match those predicted by Bolleter. At the predicted frequencies given

by Bolleter, the compressible model shows an attenuation of the pressure oscillations

at the seal exit. This does not provide a plausible explanation for the unusual behavior

exhibited by the wearing ring seal.

The compressibility of the fluid does not have a significant influence on the

model at low values of nondimensional frequency. At high values of nondimensional

frequency, the effects of compressibility become more significant. For the acoustic

analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the

results to a limited extent for a precession excitation and a large extent for a pressure

excitation when the fluid operates at relatively high mach numbers.
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APPENDIX A

Us0

A_- 2h_o[O,(Uoo- 1)mr+ osu_'ns ]

(A.1)

a,,- u_o _o.mr+o_s)
2holboX

(A.2)

Coefficient definitions for [A] Eq. (40)

Al I
_odS rds dp Po

l dho + 1 dP._2o+ l dr]

hods Pods r ds)

(A.3)

a,,-,,,o_o+ JT_o,,,oJ/.__-ou.,o,:,
(A.4)

A13 =
,,,od_or_,, d_of,,,od_o _Tuoo_

(A.5)

r :,_ho,_o+,_rI "_:_olA,l =[PoUloth_+ _"_ ni,_j+a:tiPo F5

(A.6)

.toT.

A_ = (Az_Po + J'TPoUso)/Fs
(A.7)
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_ i d_o[_ dOo(U,oa_o._Tuoo]
-]_Tu_o_o-A_,_ (A.8)

u,o(: _±dhom
F_'Vo_ hod, d_)

(A.9)

(A.IO)

2

F 5 = 1+ usodPo
Po dp

Right hand side definitions for equation 41

. ,_ .. rTdz_
G_= -_po_- _oUf2-jpoU,o_--_

I ,_d_o]-_)

(A.11)

(A.12)

(A.13)r;_Or-u_r )
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APPENDIX B

Coefficient definitions for [B] of Eq. (50)

/ o] -oo/[ . {dho + dPo dr +jT'T_ u_/ .
_" [ _°"_h-_ _o---_"_ -_° dp_o

l dho + I dP__oo+ I dr]

h 0 ds POds r d_)

+

(B.1)

A .ntzT. ],{dOo 1 2, )_,_- u.o,.,_o+,---;-poU_o],__ _ou.opo
(B .2)

_um dOo[_ dOo(usodOo .ntzTuoo]_jnt_TU_oOo_AeO j
(B.3)

[- ( dho + d_o dr) _jI, T,_J/F 5
(B.4)

(B.5)

x d_o[_ apo{u.dPo+jnozu_o] J
B33 p:, d_ [P°u'b_-"_-p ('_o _ _ l) -jnf_Tu'_pO-A4_p

(13.6)
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APPENDIX C

Coefficient definitions for [C] of Eq. (57)

= [ 1 dh+ 1 dPo A3oc°ZT2f (A2oA30°7)]c. t_-d To--d-.--_ .j
(C.l)

(72 t = Aas- Aa°A3°Azs +3(0 Tf+ A3°A2*]
Aoc Aoc )

(C.2)

C12 +fdOoAj .[PT Po ÷ 1 _A dP°

_o'd, )J
(C.3)

(C.4)

Aoc =A2e + (o2T_ #2 (C.5)
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APPENDIX D

Coefficient definitions for [D] of Eq. (60)

Dll
! dh + 1_dr +a30n%2T2f+j(A_t30n_7)]
ho ds r ds rAo_ rAoc J

fO.1)

D21 = A3a-
a2oa3oa_

Aoc

(D.2)

DI2
iA20bLs d_o ] _pTdOo 1 ( dOo fn2_2T2bLsl]

--r,R,Po ÷f--_pA,+j.,[_o_p +_-_(A,oA,te-_.- p - _ )j

(1).3)

A2e[ d_o n_TbL,)_ dOoA " + ]

)
(D.4)

A_ =a_e + n26_2T_ (D.5)


